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• Motivation for Spherical Tokamak (ST) 

• ST Development Paths 

• QUEST in the world ST program 

• QUEST/NSTX-U Collaboration 

• Summary 

 

 

Outline 
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STs have higher natural elongation 

Higher elongation improves stability, confinement 

Elongation k = b / a 

b = vertical ½ height      a = minor radius 

a 

b 
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ITER will be first device to access “burning plasma” 

• Burning plasma: majority of plasma heating power 
comes from fusion alpha particles from DT reactions 
 

 DT reaction energy split:  1/5 in alphas, 4/5 in neutrons 
 

• ITER goal Q = Pfusion / Pexternal heating = 10 
 

• Q = 10  Palpha / Pexternal = 2 
 

• Palpha / Palpha + external = 2 / 3 > 50% 
A=3.1, R=6.2m, BT=5.3T, IP=15MA 

ITER under construction in Cadarache, France 
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ITER magnets will be largest ever built 

• 18 toroidal field magnets 

• 12 Tesla at coil 

• Weight: 6500 tons 

• 80,000 km of Nb3Sn 

superconducting strand 

in total length 

Toroidal field current 

165 million amps 
Plasma current: 

15 million amps 

These 

are large 

numbers 
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A ~ 2.5-4  

k = 1.5-2  

bT = 3-10%  

A ~ 1.3-2 

k = 2-3 

bT = 10-40%  

Tokamak ST 

Favorable average curvature improves stability 

Toroidal beta bT = p / (BT0
2/2m0) Aspect Ratio A = R /a Elongation k = b/a 

Plasma 

spends 

less time 

in unstable 

curvature 

region 
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Higher bT enables higher fusion power and compact 

FNSF for required neutron wall loading 

Tokamak 
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Data base from START, MAST, 
PEGASUS and NSTX 

Pfusion ∝ p 2  x  Vol 

Pfusion ∝ bT
2    BT0

4  x  Vol  

$ Physics 
Knob 

Product 
Investment 

Wn ∝ Pfusion / Area 

High neutron wall loading Wn  

possible in a compact ST 

Wn ∝ bT
2 BT0

4  a   (not strongly size dependent) 

 

Wn  ~ 1 MW/m2 with R ~ 1 m FNSF feasible! 
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ST Development Paths 
Fusion Power Can Be Generated in Diverse Range of STs 

 
 

R0 ~ 4.5m 

Cryostat volume and 

ITF ~ 1/3  of ITER 

A=2, R0 = 3m HTS-TF 

FNSF / Pilot Plant 

ORNL 

PPPL 

ST-FNSFs  

R=1.7m:  TBR ≥ 1 

R=1.0m:  TBR < 1 (≈ 0.9) 

Pfusion = 520 MW 
Qeng = 1.35 
Pnet = 73 MW 

PPPL 

ARIES-ST Cu Power Plant 

JUST SC ST Power Plant 
R0 ~ 3.2 m 

VECTOR, Slim CS 
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Spherical Tokamaks have the potential attractiveness 

for fusion development paths 

Attractiveness of Spherical Tokamaks for Fusion Energy Development: 

• Projected to access high neutron wall loading for fusion material and 
engineering development at moderate R0, Pfusion  

Wn ~ 1-2 MW/m2 , Pfus ~ 50-200MW, R0 ~ 0.8-1.8m 

• Modular, simplified maintenance  

• Tritium breeding ratio (TBR) near 1 in a compact size (R ~ 1.7m) 

Requires sufficiently large R0, careful design 

• Net electricity possible for an ST with R = 3m 

 

R&D Needs for Fusion Energy Development: 

  • Non-inductive start-up, ramp-up, sustainment 

Low-A  minimal inboard shield  no/small  transformer 

• Divertor solutions for high heat flux 

• Confinement scaling (especially electrons) 

• Stability and steady-state control 

• Radiation-tolerant magnets, design  
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Operating ST Research Facilities Since 2000 
NSTX and MAST: MA-class STs, other STs addressing topical issues 

z 

NSTX/LTX 

PEGASUS 
KTM 

GLOBUS-M 

SUNIST VEST 
HIT-II QUEST 

HIST 
LATE 
TST-2 
TS3/4 
UTST 

ETE 

NSTX, USA 

R0 ~ 0.85 m 

MAST, UK 

R0 ~ 0.75 m 

HIT-II, 

USA 

QUEST/CPD, Japan 

VEST, 
Korea 

ETE, Brazil 

LATE, Japan 

TS3/4, Japan SUNIST, China 

HIST, 

Japan 
UTST, Japan TST-2, Japan 

GLOBUS-M, Russia LTX/CDX-U, USA PEGASUS, USA 

STs operated since 2000 z 

MAST 

ST25(HTS) z 

ST25, UK 
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QUEST is the only ST which can operate long-pulse 
QUEST is also unique in hot-wall, high power ECH, and CHI 

Hot wall 

Coaxial Helicity Injection 

Target 

Long-Pulse Plasmas 

Record ECH Start-Up  
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NSTX Upgrade Device and Test Cell – Aerial View 
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NSTX Upgrade will access new physics 
with 2 major new tools: 

Higher T, low n* from low to high b 

BT = 1 T for 5 sec,  

Ip = 2 MA 

Full non-inductive current drive 
PNBI = 10 MW  
PHHFW = 5 MW  

2. Tangential 2nd Neutral Beam 1. New Central Magnet 
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Solenoid-free Start-up and Ramp-up are Critical Issues  

for Compact ST and Tokamak-based Reactors 

 

ECH / EBW – Utilize 1 – 2 MW, 28 GHZ gyrotron 

CHI, LHI – Coaxial Helicity Injection and local helicity 
injection up to ~ 400 kA 

HHFW  ~ 4 MW 30 MHZ High Harmonic Fast Wave 

NBI  ~ 10 MW NBI  

NSTX-U IP [MA] 

NBI 

Time 

HHFW 

ECH/EBW, CHI, LHI 

Solenoid-free 
Start-up phase 

Current ramp-up 
phase 

 
0 MA                0.4 MW                1 MA 

• ST has been addressing critical 

issue of solenoid-free start-up 

– A compact ST has little space for 

a central solenoid 

– Solenoid-free start-up is also 

attractive for tokamak designs 

 

• Maximizing solenoid-free start-up 

currents reduces reliance on less 

developed non inductive current 

ramp-up scenarios 

 

• Few MA start-up current is projected 

for reactors 

– Higher currents may be feasible 

NSTX-U will not conduct solenoid-free start-

up / ramp-up experiments near term 
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NSTX-U and QUEST are complementary 

Short-pulse vs. Long-pulse 

High field – high power for a few sec 
All carbon wall without hot wall,  

no ECH and CHI in near term 

Long-pulse non-inductive operations 
CHI and high power ECH,  

all metal hot wall, steady-state 

QUEST NSTX-U 

NSTX-U would like to collaborate with QUEST to pursue ECH, CHI, long-pulse, all metal hot wall 
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•  QUEST and its high power ECH system has an impressive physics capability: 

- Focusing and steering capability to control the ECH deposition profiles. 

- Capable of scanning in NII and polarization for wave physics. 

- BT scanning to explore the resonance layer position dependence. 

Develop comprehensive picture of QUEST ECCD: 

• Provide fast electron generation with GENRAY and CQL-3D for 
ECH fast electron generations. (N. Bertelli, R. Harvey) 

•  Measure time and spatially resolved soft x-ray profiles  using 
NSTX-U multi-energy soft x-ray Pilatus camera together with 
other x-ray detectors on QUQEST.  (L. Delgado-Aparicio, M. Ono) 

•  Developing a new synthetic diagnostic tool for multi-energy soft 
x-ray camera with UT/TST-2 to obtain fast electron evolutions.  
(L. Delgado-Aparicio with H. Yamazaki) 

•  Aim to develop a comprehensive predictive modeling including 
the ECH generated fast electron transport and confinement. (M. 
Ono, N. Bertelli, G.J. Kramer) 

QUEST Has an Active World-Class Program on ECH Start-Up 

  NSTX-U Plans to Contribute via. Theory and Diagnostic Support 
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A Tokamak Start-up Modeling being Developed 
Initially Multi-pass Non-Phased Electron Cyclotron Heating 

2ΩeLayer 

Strong ECH 
focusing for 
single pass 
absorption 
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Grad-B and Processional Currents can lead to closed flux configuration 
ECH without directionality – low absorption – multi-pass expected 

Bv = 10 G 

Ip = 556A Ip = 700A Ip = 767A Ip = 834A Ip = 855A Ip = 895A Ip = 0 A 

J   B 
J proc 

Small closed 
flux surface 
formed 
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Bootstrap Currents Can Enhance Closed Flux Surfaces 
Bootstrap current can rapidly increase the plasma current 

PECH = 100 kW 
Bv = 10 G 
ne = 1012cm-3 

*Y.S. Hwang, et al., PRL 1996,  C.B. Forest, et al.,  PoP 1994 

• ECH generated bootstrap currents were investigated in CDX-U and DIII-D.* 
• Scaling using ITER 89P confinement scaling was developed which scaling was used here. 
• Boostrap  current increases cofinement which in term generate more currents. 
• More current increases the closed flux surface volume increasing the PECH within the closed 

flux surface volume. 
• Eventuall reaches saturation since the increasing current increases poloidal fields which 

tends to reduce poloidal beta. 

Ip = 835A Ip = 1706 A Ip = 3769 A 

PECH = 3.35 kW PECH = 30 kW PECH = 61 kW 



20 QUEST １０周年記念研究会–July 20, 2018 (M. Ono) 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 2 4 6 8 10 12

Ip (A) 

# of steps 

I-boostrap 

I-procession 

I-grad-B 

Closed flux 
surfaces 
formed 

Formation of Flux Surface Formation With Pressure-Driven Currents 
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Transient CHI: It is advantageous to achieve ~ few MA  

and reduce demand on non-inductive current ramp-up 

R. Raman, F. Ebrahimi, PPPL 

• NSTX Transient CHI injects poloidal magnetic 

flux from divertor area into vessel on a 1-3ms 

time scale  

– Injector flux shaping and injector current ramp-down 

causes open flux to form closed flux surfaces (like in a 

soap bubble)  

• Obtained ~ 200 kA close flux discharge and 

aiming to achieve ~ 500 kA in NSTX-U 

• Significantly ramped up computational 

modeling work to understand CHI scaling 

• Theory and NSTX-U/HIT-II Experimental work 

has resulted in simple scaling relation for 

transient CHI to project to reactor scale 

devices (Ip  Injected flux) 

• QUEST is testing reactor-relevant CHI 

capability – localized electrodes. 

 

NSTX 
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Biased Electrode Concept to protect CHI insulator 
from Neutron damage for life of Reactor 

*Insulator dose:  

~6x109 Gy @ 6FPY < 1011 Gy limit  

* L. El-Guebaly, et al., MCNP Neutronics 

Toroidal electrode on top of blanket structure, analogous to CHI ring electrode 

R. Raman, T. Brown, L.A. El-Guebaly, et al., 
Fusion Science & Technology (2015) 

Injector flux 
connects upper 
portion of vessel 
to the electrode 
plate on the 
upper portion of 
the blanket 
assembly 

Upper portion  
of blanket 
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QUEST (in Japan) is Developing Reactor-Relevant CHI 

Configuration & Will Test ECH Heating of a Transient CHI Plasma 

Injector  
Flux 

Current injection 

• In reactor concept insulator 

can be shielded from neutrons 

• Insulator not part of vacuum 

boundary as on NSTX 

– Needs experimental test / 

verification 

• CHI system on QUEST is 

similar in concept to the one 

planned for NSTX-U 
 

CHI Insulator  

Initial injector 
current direction 

Plasma 
growth 

University of Washington, PPPL 
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Transient CHI Discharges Successfully Established in QUEST 

PPPL fast camera used to capture CHI discharges 

K. Kuroda, et al., sumitted to PP&CF 
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NSTX-U and QUEST Are Complementary 
Looking forward for the long-term collaboration! 

• QUEST is unique among the ST worldwide which can operate 

long-pulse. 

• QUEST is very complementary to NSTX-U and MAST-U.  It is 

addressing a long term ST reactor problems such as start-up, 

long-pulse, high temperature all metal wall not being 

addressed by NSTX-U and MAST-U in the near term.  This 

motivates our strong collaborations with QUEST. 

• NSTX-U wishes to collaborate with QUEST to address physics 

areas not covered by NSTX-U in the near term: 

• Support ECH / EBW start-up studies through modeling and diagnostics. 

• Support CHI work through physics support, modeling and diagnostics. 

• Support Long-pulse operations through physics support. 


