Plasma Conference 2017, 姫路商工会議所 2017.11.23

固体、気体、プラズマ中の水素循環の理解と制御

4. 周辺プラズマと壁との相互作用

坂本瑞樹 筑波大学プラズマ研究センター

周辺プラズマ及びその壁との相互作用

周辺プラズマ及びプラズマ・壁相互作用研究の 時間スケール

スケー	ル					
mont	プラズマ対向材料の h	寿命 周辺プラズマとプラズマ・壁相互作用				
		に関する現象は、コアプラズマに関す				
day		る現象に比べて長い時間スケールで				
		変化する				
hou	r プラズマと壁との平衡	時間				
	壁の水素吸蔵が飽和する時間					
_						
min	水素リサイクリンクの変化時間					
	実効的粒子閉じ込め時	実効的粒子閉じ込め時間				
	電流密度分布の変化時	電流密度分布の変化時間				
sec.	・ 粒子閉じ込め時間					
	エネルギー閉じ込め時間	エネルギー閉じ込め時間				
me	BLOB 輸送					
1113	Edge Localized Mode	赤字:周辺フラズマとフラズマ・壁相互作用				
	MHD の 成長時間	に関係した現象				
μS						
		黒字: コアプラズマに関係した現象				
ns _{照射損傷}						

境界プラズマ及びプラズマ・壁相互作用研究の 空間スケール

本発表の概要

材料(W)から放出または反射した水素原子、分子の状態に注目して、GAMMA10/PDXで行った2つの実験結果を基に議論する。

1. タングステンターゲットへのプラズマ照射実験

反射原子の励起状態に着目

2. 高温ターゲット実験

分子の励起状態に着目

GAMMA10/PDXで行われているダイバータ模擬実験の特徴の ひとつは、バックグラウンドの真空度が高い状態で、ターゲットに プラズマを照射することができるので、リサイクリング水素の状態 が見やすい。

1. タングステンターゲットへの プラズマ照射実験

タングステン板に端損失プラズマを照射

$H\alpha$ 線強度の空間分布:2つの減衰長が存在

60

z (mm)

100

40

0

これらの減衰長は、イオン化の 平均自由行程(>100m)と比べ て非常に短い

> <u>Te ~ 20 eV,</u> Ti ~ 200 eV ne ~ 2 x 10¹⁶ m⁻³

<u> 観測結果</u>

- >Hα線強度の空間分布:2つの減衰長が存在
- ▶ 減衰長はイオン化の平均自由行程(>100m)と比べて 非常に短い
- ▶ 減衰長は電子密度に依存しない

■ 電子衝突励起による発光ではないことを示唆している

タングステンで反射した水素原子の一部が励起している

Trans	sition	A ⁻¹ (10 ⁻⁸ s)	τ (mm)
3	2	2.3	3.7
4	3	11	18
5	3	45	72

 $(T_i \sim 200 \text{ eV} \text{ (evaluated by ELIEA), } R_E = 0.5)$

 減衰長が2つある理由は、n=4 or n=5からn=3への遷移、n=3から n=2へのカスケードプロセスに起因 していると考えられる。

タングステンへの高エネルギー水素イオン照射

H. A. Sakaue, D. Kato et al., Plasma conference 2014, 18PB-075.

High energy H⁺ irradiation to Mo

T. Tanabe et al., "Hydrogen reflection and H α emission", J. Nucl. Mater. 220-222 (1995) 841.

Impact of the excited state of the reflected H atoms on the ionization

周辺プラズマでのイオン化の促進

2. 高温ターゲット実験

Impact of target temperature on Hydrogen Recycling

A heater is attached on the backside of the target.

Divertor Simulation Experimental Module (D-module)

Divertor Simulation Experimental Module (D-module)

- タングステン製V字型ターゲット板 (0.3 m x 0.35 m x 0.2 mm).
- V字ターゲットの開き角は遠隔操作で 15°から80°まで変更可能
- プラズマ流入口からV字ターゲットに向けて水素ガス供給することが可能
- ターゲット板は573 Kまで昇温すること が可能

A heater is attached on the backside of the target.

水素リサイクリングのターゲット温度依存性

ターゲット温度とともに分子の回転温度が上昇

まとめ

- 周辺プラズマと壁との相互作用について、タングステンで反射した水素原子の励起状態、高温ターゲットから放出された分子の状態に注目して、GAMMA 10/PDXで行った実験結果を紹介した。
- ▶ 水素リサイクリング過程において、水素原子、水素 分子の励起状態の重要性が改めて認識された。